HPLC ANALYSIS OF ADP-RIBOSYL CYCLASE (NEURAL MICE MEMBRANES)

- 1. Hank's Balanced Salt Solution
- 2. HEPES Buffer
 - -10mM HEPES, 148mM NaCl, 5mM KCl, 1.8mM CaCl₂, 0.3mM MgCl₂, 5.5mM Glucose; pH 7.0 -for 100mL solution: 238mg HEPES, 864.9mg NaCl, 37.275mg KCl,
 - 26.465mg CaCl₂, 6.1mg MgCl₂, 99.11mg Glucose; adjust pH with KOH and HCl
- 3. Solvent A

-95% H₂O, 5% Methanol, 0.15M NH₄ -for 1L solution: 950mL H₂O, 50mL Methanol, 11.562g NH₄AC

4. Solvent B

-50% H₂O, 50% Methanol, 0.15M NH₄ -for 1L solution: 500mL H₂O, 500mL Methanol, 11.562 NH₄AC

- 1. Immolate mouse via cervical dislocation followed by rapid decapitation.
- 2. Dissect cerebral hemispheres from neonatal mice.
- 3. Remove meninges in HBSS.
- 4. Triturate cerebral hemispheres into homogenous solution using plastic pipette.
- 5. Centrifuge 3 minutes at 4000 RPM (until pellet forms).
- 6. Remove HBSS.
- 7. Create microsomes:
 - a. Homogenize neural cells with glass homogenizer in HEPES Buffer.
 - b. Centrifuge 10,000g for 30 minutes (pellet is nuclear and granular fraction).
 - c. Collect supernatant.
 - d. Centrifuge for 100,000g for 90 minutes (membrane and cytosolic fraction).
 - e. Collect supernatant.
 - f. Redisolve pellet in 80uL of HEPES Buffer.
 - g. Set some solution aside for protein assay, and, if necessary, aliquot the rest storing in liquid nitrogen.
- 10. Protein concentration assay with microsomes in HEPES Buffer previously set aside.
- 11. Incubate the supernatant from 100ug of protein(cells) with a final concentration of ImM NGD at 37°C for 2 hours.
- 12. Centrifuge the reaction mixture through Amicaon microultrafilters at 4°C at 13,800g for 15 minutes to remove proteins.
- 13. Use cGDP-R on computer detection method to detect cGDP-R production. Standards: 1uM cGDP-R
- 14. Take 100uL/vial for HPLC analysis.

1. Column type: 558	52-03 150mi	m x 4.6mm, 3um
2. Fluorescence Dete	ction: Exci	tation: 300nm
	Emis	sion: 410nm
3. Flow rate:	0.8 ml/minute	
4. Runing buffer (adju	ust pH to 5.5	with acetic acid):
Solvent A.	H ₂ O	950mL/L
	5% Methan	ol 50mL/L
	0.15M NH	₄AC 11.562g/L
Solvent B.	H₂O	500mL/L
	5 [°] Methan	ol 500mL/L
	0.15M NH	,AC 11.562a/L
5. Timetable:		• J [,]
0.01 Solver	nt A: 100%	Solvent B: 0%
4.00 Solver	nt A: 100%	Solvent B: 0%
12.0 Solver	nt A: 75%	Solvent B: 25%
16.0 Solver	nt A: 0%	Solvent B: 100%
20.0 Solver	nt A: 0%	Solvent B: 100%
25.0 Solver	nt A: 100%	Solvent B: 0%

HPLC Cleaning Procedure

- 1. Check Filter (PTFE)
 - a. Open Valve
 - b. 100% water
 - c. set flow rate to 5.00 ml/minute
 - d. if pressure is less than 10 bar \Rightarrow OK
 - e. if pressure is greater than 10 bar \Rightarrow change
- 2. Guard Column Cleaning
 - a. Remove guard column (front end first)
 - b. Come back to 1AB. Remove gray foal pad
 - i. Look for cleaning stuff
 - c. With the wire, clean all of the white foam from the middle of the column, putting clean pieces in water in beaker
 - d. Sonicate for 30 seconds, 3 times with water
 - e. Sonicate for 30 seconds, 3 times with Ethanol
 - f. Dry pieces with forced air in the hood
 - g. Put together first on sides where arrow points \Rightarrow put new filters in

- h. Funnel powder in with arrow pointing down
 - i. Pack very tightly
- i. Put column back together
 - i. Align arrow with the flow
 - ii. Put the backside on first and secure it, do NOT put front side on yet
 - iii. Drop flow rate to 0.8, close purge valve
 - iv. Wait until there is a consistent flow from the column
 - v. Once the constant drip begins, open valve and replace front end
- j. Close valve \Rightarrow leak sensors
 - i. Check for leaks in the creases of the column by wiping using a KIM-WIP
 - ii. If leaking, tighten or check to see if assembled correctly

HPLC Sampling Protocol

- 1. Before start:
 - a. Light Bulb warm up (~ 2 minuites)
 - b. Method is on ERYN-UV.M
 - c. Buffer solution volume is the actual amount
 - d. Sequence parameters
 - i. Change date
 - ii. Ensure that post-sequence CMP is checked
 - e. Sequence tables (under ERYN-UV.M)
 - i. Enter vials and quantity
 - ii. Injection rate is 20 ul
 - iii. Sample amount is 100 ul
 - iv. Last sample set to WASH-2-UV
 - f. Sequence output
 - i. Select as specified in each method
 - g. Run control tab
 - i. Sample info, Change date
 - h. 15 minutes before START
 - i. run buffers through at 50% 'A' / 50% 'B' at the rate of 5.0 ml/ minute for 15 minutes with purge valve open
 - i. Check and recheck parameters and hit START !!!!